37 research outputs found

    Muscle glycogen utilisation during Rugby match play: Effects of pre-game carbohydrate

    Get PDF
    Objectives: Although the physical demands of Rugby League (RL) match-play are well-known, the fuel sources supporting energy-production are poorly understood. We therefore assessed muscle glycogen utilisation and plasma metabolite responses to RL match-play after a relatively high (HCHO) or relatively low CHO (LCHO) diet. Design: Sixteen (mean ± SD age; 18 ± 1 years, body-mass; 88 ± 12 kg, height 180 ± 8 cm) professional players completed a RL match after 36-h consuming a non-isocaloric high carbohydrate (n = 8; 6 g kg day−1) or low carbohydrate (n = 8; 3 g kg day−1) diet. Methods: Muscle biopsies and blood samples were obtained pre- and post-match, alongside external and internal loads quantified using Global Positioning System technology and heart rate, respectively. Data were analysed using effects sizes ±90% CI and magnitude-based inferences. Results: Differences in pre-match muscle glycogen between high and low carbohydrate conditions (449 ± 51 and 444 ± 81 mmol kg−1 d.w.) were unclear. High (243 ± 43 mmol kg−1 d.w.) and low carbohydrate groups (298 ± 130 mmol kg−1 d.w.) were most and very likely reduced post-match, respectively. For both groups, differences in pre-match NEFA and glycerol were unclear, with a most likely increase in NEFA and glycerol post-match. NEFA was likely lower in the high compared with low carbohydrate group post-match (0.95 ± 0.39 mmol l−1 and 1.45 ± 0.51 mmol l−1, respectively), whereas differences between the 2 groups for glycerol were unclear (98.1 ± 33.6 mmol l−1 and 123.1 ± 39.6 mmol l−1) in the high and low carbohydrate groups, respectively. Conclusions: Professional RL players can utilise ∼40% of their muscle glycogen during a competitive match regardless of their carbohydrate consumption in the preceding 36-h

    Position specific differences in the anthropometric characteristics of elite European Super League rugby players

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in European Journal of Sport Science on 20 January 2015 available online: http://wwww.tandfonline.com/10.1080/17461391.2014.99780

    Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition

    Get PDF
    Low total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in 348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval: 1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free mass, and fat mass is associated with changes in weight or body composition. Here, we report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed models show no among or within-individual correlation between body composition (fat mass or percentage) and unadjusted TEE in adults. For adults aged 20-60 y (N = 267; time interval: 7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with changes in body composition; results are similar for subjects with intervals >4 weeks (N = 53; 29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not protective against, weight or body fat gain over the time intervals tested

    Variability in energy expenditure is much greater in males than females

    Get PDF
    In mammals, trait variation is often reported to be greater among males than females. However, to date, mainly only morphological traits have been studied. Energy expenditure represents the metabolic costs of multiple physical, physiological, and behavioral traits. Energy expenditure could exhibit particularly high greater male variation through a cumulative effect if those traits mostly exhibit greater male variation, or a lack of greater male variation if many of them do not. Sex differences in energy expenditure variation have been little explored. We analyzed a large database on energy expenditure in adult humans (1494 males and 3108 females) to investigate whether humans have evolved sex differences in the degree of interindividual variation in energy expenditure. We found that, even when statistically comparing males and females of the same age, height, and body composition, there is much more variation in total, activity, and basal energy expenditure among males. However, with aging, variation in total energy expenditure decreases, and because this happens more rapidly in males, the magnitude of greater male variation, though still large, is attenuated in older age groups. Considerably greater male variation in both total and activity energy expenditure could be explained by greater male variation in levels of daily activity. The considerably greater male variation in basal energy expenditure is remarkable and may be explained, at least in part, by greater male variation in the size of energy-demanding organs. If energy expenditure is a trait that is of indirect interest to females when choosing a sexual partner, this would suggest that energy expenditure is under sexual selection. However, we present a novel energetics model demonstrating that it is also possible that females have been under stabilizing selection pressure for an intermediate basal energy expenditure to maximize energy available for reproduction. (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Physical activity and fat-free mass during growth and in later life

    Get PDF

    Variation in human water turnover associated with environmental and lifestyle factors

    Get PDF
    Water is essential for survival, but one in three individuals worldwide (2.2 billion people) lacks access to safe drinking water. Water intake requirements largely reflect water turnover (WT), the water used by the body each day. We investigated the determinants of human WT in 5604 people from the ages of 8 days to 96 years from 23 countries using isotope-tracking (2H) methods. Age, body size, and composition were significantly associated with WT, as were physical activity, athletic status, pregnancy, socioeconomic status, and environmental characteristics (latitude, altitude, air temperature, and humidity). People who lived in countries with a low human development index (HDI) had higher WT than people in high-HDI countries. On the basis of this extensive dataset, we provide equations to predict human WT in relation to anthropometric, economic, and environmental factors.acceptedVersio

    Energy compensation and adiposity in humans

    Get PDF
    Acknowledgments The DLW database, which can be found at https://doubly-labelled-water-database.iaea.org/home, is hosted by the IAEA and generously supported by Taiyo Nippon Sanso and SERCON. We are grateful to the IAEA and these companies for their support and especially to Takashi Oono for his tremendous efforts at fundraising on our behalf. The authors also gratefully acknowledge funding from the Chinese Academy of Sciences (CAS 153E11KYSB20190045) to J.R.S. and the US National Science Foundation (BCS-1824466) awarded to H.P. The funders played no role in the content of this manuscript. We are grateful for the data submission of David Ludwig and Cara Ebbeling, and for the analysis by Steve Heymsfield of his own data indicating no change in FFM hydration with age in adults.Peer reviewedPublisher PD

    Variability in energy expenditure is much greater in males than females

    Get PDF
    publishedVersionPaid open acces

    Greater male variability in daily energy expenditure develops through puberty

    Get PDF
    There is considerably greater variation in metabolic rates between men than between women, in terms of basal, activity and total (daily) energy expenditure (EE). One possible explanation is that EE is associated with male sexual characteristics (which are known to vary more than other traits) such as musculature and athletic capacity. Such traits might be predicted to be most prominent during periods of adolescence and young adulthood, when sexual behaviour develops and peaks. We tested this hypothesis on a large dataset by comparing the amount of male variation and female variation in total EE, activity EE and basal EE, at different life stages, along with several morphological traits: height, fat free mass and fat mass. Total EE, and to some degree also activity EE, exhibit considerable greater male variation (GMV) in young adults, and then a decrease in the degree of GMV in progressively older individuals. Arguably, basal EE, and also morphometrics, do not exhibit this pattern. These findings suggest that single male sexual characteristics may not exhibit peak GMV in young adulthood, however total and perhaps also activity EE, associated with many morphological and physiological traits combined, do exhibit GMV most prominently during the reproductive life stages

    Energy compensation and adiposity in humans

    Get PDF
    Understanding the impacts of activity on energy balance is crucial. Increasing levels of activity may bring diminishing returns in energy expenditure because of compensatory responses in non-activity energy expenditures. This suggestion has profound implications for both the evolution of metabolism and human health. It implies that a long-term increase in activity does not directly translate into an increase in total energy expenditure (TEE) because other components of TEE may decrease in response-energy compensation. We used the largest dataset compiled on adult TEE and basal energy expenditure (BEE) (n = 1,754) of people living normal lives to find that energy compensation by a typical human averages 28% due to reduced BEE; this suggests that only 72% of the extra calories we burn from additional activity translates into extra calories burned that day. Moreover, the degree of energy compensation varied considerably between people of different body compositions. This association between compensation and adiposity could be due to among-individual differences in compensation: people who compensate more may be more likely to accumulate body fat. Alternatively, the process might occur within individuals: as we get fatter, our body might compensate more strongly for the calories burned during activity, making losing fat progressively more difficult. Determining the causality of the relationship between energy compensation and adiposity will be key to improving public health strategies regarding obesity
    corecore